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Outline

● W mass measurements at the LHC:
➢ Motivation
➢ Methods

● Challenges in calculating QCD-EW corrections
➢ Onshell production – infrared subtractions

● IR subtractions in NNLO QCD
● Mixed QCD-EW corrections to Z boson production
● Mixed QCD-EW corrections to W boson production
● Impact on measurements of W-mass
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Motivation

● W mass is a fundamental property of an elementary particle.
● Linked to EWSB:

Connection between masses and couplings.

● Radiative corrections:

● Used in global EW fits, test self-consistency of SM.

[Gfitter Group: Haller et al. 
(2018)]￸ 

● Possible probe of BSM physics
➢ Using SMEFT [Bjørn, Trott (2016)]￸

[Awramik, Czakon, Freitas, Weiglein (2003)]￸
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Experimental measurements

PDG (2019):

● Theory prediction                                                sets target precision.

● Consistent with theory 
prediction, but higher 
precision desirable.

● Uncertainty dominated by 
physics modelling.

Tevatron 
average

World average

ATLAS (2017)
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Experimental measurements

● W mass directly measured in
● Template fit: simulate data for different values of W-mass and fit to data.
● Three observables: 
● Strongest pull from         , also most sensitive to higher order corrections.

● Uncontrolled non-perturbative effects enter at the level of 

→ theoretical predictions not reliable at the desired precision of 0.1 per mille.
● Use control of process                         to calibrate detector response, tune 

generators, and verify results.

Higher order corrections that decorrelate W and Z 
need to be taken into account.

[Carloni Calame et al. 
(2016)]￸.
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Higher order corrections

● Fixed-order perturbative calculations: expand partonic cross section in  
                 and        

● QCD corrections: largely similar for W and Z production
➢ Minor differences: different pdfs, different masses, helicity structures, …

● EW corrections: qualitatively different – W charged, can radiate:
● Impact of NLO EW corrections on W-mass 

measurement studied. 
● Investigate impact of mixed QCD-EW corrections.

[Carloni Calame et al. (2016)]￸.
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Mixed QCD-EW corrections

Two challenges in computing mixed QCD-EW corrections to 

1. Two-loop amplitudes:

• Several energy scales  – very demanding!

• Recent computation: [Heller, von Manteuffel, 
Schabinger, Spiesberger (2020)]￸

2. QCD and EW singularities:
● Infrared singularities arising from 

radiated and virtual partons and 
photons.
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QCD-EW corrections to onshell vector boson production

Simplification: consider onshell vector bosons

● QCD (production) x 
EW (decay)

➢ Two-loop amplitudes → much simpler form factors.
➢ Major challenge: treating simultaneous QCD and 

EW IR singularities.
➢ Insight from NNLO QCD: treatment of IR 

singularities from double emissions.

[Dittmaier, Huss, Schwinn, 
(2014, 2015)]￸

● QCD x EW (production)
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Infrared singularities in QCD

● Virtual corrections 
➢ Explicit IR singularities from loop integration

Higher order corrections contain IR singularities from soft and/or 
collinear radiation.

● Real corrections 
➢ Integrate over phase space of radiated parton:

● Singularities unphysical, guaranteed to cancel in sum (KLN theorem).
● Cancellation only manifest after integrating over full phase space of emitted 

parton: 

    → lose kinematic information.

diverges
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Subtracting IR singularities in QCD

Subtraction scheme: 

Extract singularities without integrating over full phase space of radiated parton:
● Singularities manifest as poles in       cancel against poles in virtual correction  

→ finite fully differential result.

Finite; 

integrate in 4-dim.

Counterterm;

Explicit singularities  

● Subtractions at NLO fully solved.
● Constructing NNLO subtraction schemes is an active area of research.

 [Catani, Seymour (1996); Frixione, Kunszt, Signer (1996, 1997)]￸
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IR singularities at NNLO in QCD

Singularities arise when:
● Either gluon or both gluons→ soft.
● Either gluon or both gluons→ collinear to either initial state 

quark.
● Gluons → collinear to each other.

Complicated singularity structure at NNLO:

● Any combination of above – overlapping singularities.
– Can approach each limit in different ways.

● Need to separate the singularities.
● Multiple approaches: Antennas, STRIPPER, CoLoRFulNNLO, Projection-to-Born, 

nested soft-collinear subtraction, geometric subtraction, local analytic 
subtraction, ...
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Nested soft-collinear subtractions
[Caola, Melnikov, R.R. (2017)]￸

● Extension of FKS subtraction to NNLO.
● Colour coherence → independent subtraction of soft and collinear divergences.
● Overlapping soft singularities separated by energy ordering.
● Overlapping collinear singularities separated using partitions and sectors.

➢ Natural splitting by rapidity.

● Fully local and fully analytic.

● Clear physical origin of singularities (soft & collinear).
● Flexible → use for mixed QCD-EW singularities.

[Caola, Melnikov, R.R. (2019); Asteriadis, Caola, Melnikov, R.R. (2019)]￸

[Delto, Frellesvig, Caola, Melnikov (2018); Delto, Melnikov (2019)]￸
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Color coherence
● On-shell, gauge-invariant QCD scattering amplitudes : color coherence.
● Used in resummation & parton showers; not manifest in subtractions.

● Soft gluon cannot resolve details of collinear 
splittings; only sensitive to total color charge.

No overlap between soft and collinear limits – treated independently:
● Regularize soft singularities first, then collinear singularities.
● Energies and angles decouple.
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Soft singularities

● Regulate the soft singularities:

→ soft singularities: either double soft or g5 soft. 

Double- and single-soft 
counterterms

Soft-subtracted term – still 
has (overlapping) collinear 
singularities

● Overlapping double-soft and single-soft limits: order energies:

● Consider partonic process
● Define



BNL
18 March 2021

Raoul Röntsch (CERN) 15

Separate overlapping collinear limits in two stages:

and

Triple collinear partition

Double collinear partition

Phase-space partitioning

1. Introduce phase-space partitions
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Sector Decomposition

2. Sector decomposition to remove remaining overlapping singularities in 
triple collinear partitions.

● Thus the limits are

● Define angular ordering to separate singularities.

● Achieved using angular phase-space parametrization [Czakon (2010, 2011)]￸.
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Removing collinear singularities

Separates collinear limits – subtract iteratively from soft-regulated term 

Fully subtracted term – finite(Soft-regulated) single and triple collinear 
counterterms.

Integrate four singular counterterms 

over unresolved phase space :

➢ cancel IR poles against loop amplitudes;

➢ Finite remainder: subtraction counterterm.
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NNLO corrections to Drell-Yan production

Separates collinear limits – subtract iteratively from soft-regulated term 

Fully subtracted term – finite(Soft-regulated) single and triple collinear 
counterterms.

Integrate four singular counterterms 

over unresolved phase space :

➢ cancel IR poles against loop amplitudes;

➢ Finite remainder: subtraction counterterm.

● Developed fully differential parton-level code for Drell-Yan 
production at NNLO in QCD.

● Isolate individual colour factors – detailed checks against 
analytic results of [Hamberg, van Neerven, Matsuura (1990)]￸.
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Return to QCD-EW corrections

Consider QCD-QED corrections to 

NNLO QCD corrections with one gluon replaced by a photon.
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QCD-QED corrections to Z production

Abelianization achieved by modifying colour factors. [De Florian, Der, Fabre (2018)]￸

(quark-antiquark 
channel)

(other channels)
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QCD-QED results for Z production
● Procedure applied by [De Florian, Der, Fabre (2018)]￸ to analytic formulas for inclusive 

Drell-Yan production at NNLO in QCD [Hamberg, van Neerven, Matsuura (1991)]￸.

    → QCD-QED corrections to cross section.

● Procedure applied to fully differential 
corrections using nested soft-collinear 
subtraction scheme.

[Delto, Jaquier, Melnikov, R.R. (2019)]￸

   → fully differential QCD-QED corrections.
● Corrections generally below per mille level.

● IR singularities arise only from QCD-QED corrections – abelianization 
solves this problem for QCD-EW corrections to Z production.
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QCD-EW corrections for Z production

● QCD-EW corrections to Z boson production: include QCD-weak corrections.
● Contain virtual weak bosons

[Cascioli, Maierhöfer, Pozzorini 
(2012); Buccioni, Pozzorini, Zoller 
(2018); Buccioni et al. (2019)]￸

OpenLoops 

[Kotikov, Kühn, Veretin (2008)]￸

+ renormalization terms
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QCD-EW results for Z production

Mixed QCD-EW corrections to 
[Buccioni, Caola, Delto, Jaquier, Melnikov, R.R. (2020)]￸

● Fully differential.
● Good agreement with inclusive 

calculation [Bonciani, Buccioni, Rana, 
Vicini (2020)]￸

● QCD-weak effects dominate

    → QCD-EW corrections ~ 0.1%.
● Corrections strongly cut-dependent.
● No clear hierarchy with NNLO QCD.
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QCD-EW corrections to W boson production

Soft gluon → 

● Qualitatively new feature: photon radiated off W. 
● Collinear limits regulated by W-mass, but soft limit is singular.
● Changes form of eikonal function in soft limit:

Cannot just abelianize as for Z production – more substantial changes to 
subtraction scheme needed.

Soft photon → 

Can we do the same for                           ?
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QCD-EW corrections to W boson production

Can make subtraction scheme simpler:
● Recall NNLO QCD: soft limits of gluons overlap → introduced energy 

ordering.
● Mixed QCD-EW: soft limits of gluons and photons are independent → no 

energy ordering needed.

● Soft subtraction: iterated NLO-like soft limits.



BNL
18 March 2021

Raoul Röntsch (CERN) 26

QCD-EW corrections to W boson production

● Genuine NNLO-like singularities in collinear limits → require phase-space partitioning 
and sectoring.

● Fewer collinear singularities:

disappears.

● Fewer sectors required:.
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QCD-EW corrections to W boson production

● First full computation of two-loop 
form factor:

● Real-virtual amplitudes → OpenLoops

Mixed QCD-EW corrections to 

We now have all ingredients to calculate impact of QCD-EW corrections 
on W mass determination.

[Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, R.R. (2020)]￸
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W mass determination

● Estimate effect of QCD-EW corrections on W mass measurement.
● Decorrelated corrections between Z and W production.
● Correlation between average transverse momentum of leptons and mass of boson:

● Theoretical correction: assume input masses, compute W-mass, and compare with input W-mass.

→ estimate impact of decorrelations  in W and Z spectra from higher order corrections:
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Impact on W mass determination

Gμ scheme

NNPDF31_luxQED

Shifts in W-mass: inclusive setup 

➔ Impact of QCD-EW corrections larger than NLO 
EW:
➢ NLO EW corrections suppressed in Gμ scheme.

➢ NLO EW corrections more correlated between W 
and Z production.

➢ Consider QCD-EW corrections to W production only:
• NLO EW:
• QCD-EW:

● NLO EW:
● QCD-EW:
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Impact on W mass determination

Shifts in W-mass: fiducial setup

➔ Cuts can have dramatic impact: shifts vary by factor of 20.
➢ “ATLAS” cuts have stronger cuts on leptons from (lighter) W than from Z → decorrelation.

➔ QCD-EW shifts potentially relevant for target precision of 8 MeV.

● Inclusive setup:
● “ATLAS” cuts:
● “Tuned” cuts:

“ATLAS” cuts:

“Tuned” cuts:
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Interpretation

● These results are estimates of impact of QCD-EW corrections on W-
mass measurements at the LHC.

● Indicate that QCD-EW corrections could be relevant for 0.1 permille 
precision on W-mass measurements.

● Further investigations are essential:
➢ What is the impact when using the full transverse momentum spectrum?
➢ What is the impact on other observables?
➢ How well are these captured with standard experimental simulation tools?
➢ How reliable are these results – do we need to include parton showers to 

handle Sudakov shoulder?
➢ ...
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Conclusions

● Performed first fully differential calculation of mixed QCD-EW corrections to 
onshell W and Z boson production.

● IR singularities treated using nested soft-collinear subtractions:

➢ Z production: abelianization of NNLO QCD subtraction procedure.

➢ W production: more dramatic changes to subtractions.

● Estimated impact on measurement of W-mass at LHC ~ 10 MeV.

➢ Strongly cut-dependent.

➢ Potentially relevant for target uncertainty of 0.1 per mille.

➢ Further investigations needed.
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Thank you for your attention!
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